Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Healthc Inform Res ; 5(1): 54-69, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1471846

ABSTRACT

Testing is crucial for early detection, isolation, and treatment of coronavirus disease (COVID-19)-infected individuals. However, in resource-constrained countries such as the Philippines, test kits have limited availability. As of 11 April 2020, there are 11 testing centers in the country that have been accredited by the Department of Health (DOH) to conduct testing. In this paper, we use nonlinear programming (NLP) to determine the optimal percentage allocation of COVID-19 test kits among accredited testing centers in the Philippines that gives an equitable chance to all infected individuals to be tested. Heterogeneity in testing accessibility, population density of municipalities, and the capacity of testing facilities are included in the model. Our results show that the range of optimal allocation per testing center are as follows: Research Institute for Tropical Medicine (4.17-6.34%), San Lazaro Hospital (14.65-24.03%), University of the Philippines-National Institutes of Health (16.25-44.80%), Lung Center of the Philippines (15.8-26.40%), Baguio General Hospital Medical Center (0.58-0.76%), The Medical City, Pasig City (5.96-25.51%), St. Luke's Medical Center, Quezon City (1.09-6.70%), Bicol Public Health Laboratory (0.06-0.08%), Western Visayas Medical Center (0.71-4.52%), Vicente Sotto Memorial Medical Center (1.02-2.61%), and Southern Philippines Medical Center (≈ 0.01%). Our results can serve as a guide to the authorities in distributing the COVID-19 test kits. These can also be used for proposing additional testing centers and utilizing the available test kits properly and equitably, which helps in "flattening" the epidemic curve.

2.
BMC Public Health ; 21(1): 1711, 2021 09 21.
Article in English | MEDLINE | ID: covidwho-1430413

ABSTRACT

BACKGROUND: Responses of subnational government units are crucial in the containment of the spread of pathogens in a country. To mitigate the impact of the COVID-19 pandemic, the Philippine national government through its Inter-Agency Task Force on Emerging Infectious Diseases outlined different quarantine measures wherein each level has a corresponding degree of rigidity from keeping only the essential businesses open to allowing all establishments to operate at a certain capacity. Other measures also involve prohibiting individuals at a certain age bracket from going outside of their homes. The local government units (LGUs)-municipalities and provinces-can adopt any of these measures depending on the extent of the pandemic in their locality. The purpose is to keep the number of infections and mortality at bay while minimizing the economic impact of the pandemic. Some LGUs have demonstrated a remarkable response to the COVID-19 pandemic. The purpose of this study is to identify notable non-pharmaceutical interventions of these outlying LGUs in the country using quantitative methods. METHODS: Data were taken from public databases such as Philippine Department of Health, Philippine Statistics Authority Census, and Google Community Mobility Reports. These are normalized using Z-transform. For each locality, infection and mortality data (dataset Y) were compared to the economic, health, and demographic data (dataset X) using Euclidean metric d=(x-y)2, where x∈X and y∈Y. If a data pair (x,y) exceeds, by two standard deviations, the mean of the Euclidean metric values between the sets X and Y, the pair is assumed to be a 'good' outlier. RESULTS: Our results showed that cluster of cities and provinces in Central Luzon (Region III), CALABARZON (Region IV-A), the National Capital Region (NCR), and Central Visayas (Region VII) are the 'good' outliers with respect to factors such as working population, population density, ICU beds, doctors on quarantine, number of frontliners and gross regional domestic product. Among metropolitan cities, Davao was a 'good' outlier with respect to demographic factors. CONCLUSIONS: Strict border control, early implementation of lockdowns, establishment of quarantine facilities, effective communication to the public, and monitoring efforts were the defining factors that helped these LGUs curtail the harm that was brought by the pandemic. If these policies are to be standardized, it would help any country's preparedness for future health emergencies.


Subject(s)
COVID-19 , Pandemics , Communicable Disease Control , Humans , Local Government , Philippines/epidemiology , SARS-CoV-2
3.
Appl Health Econ Health Policy ; 19(5): 699-708, 2021 09.
Article in English | MEDLINE | ID: covidwho-1281349

ABSTRACT

BACKGROUND: Vaccine allocation is a national concern especially for countries such as the Philippines that have limited resources in acquiring COVID-19 vaccines. As such, certain groups are suggested to be prioritized for vaccination to protect the most vulnerable before vaccinating others. OBJECTIVE: The study aims to determine an optimal and equitable allocation of COVID-19 vaccines in the Philippines that will minimize the projected number of additional COVID-19 deaths while satisfying the priority groups for immediate vaccination. METHODS: In this study, a linear programming model is formulated to determine an allocation of vaccines such that COVID-19 deaths are minimized while the prioritization framework set by the government is satisfied. Data used were collected up to November 2020. Total vaccine supply, vaccine effectiveness, vaccine cost, and projected deaths are analyzed. Results of the model are also compared to other allocation approaches. RESULTS: Results of the model show that a vaccine coverage of around 60-70% of the population can be enough for a community with limited supplies, and an increase in vaccine supply is beneficial if the initial coverage is less than the specified target range. Additionally, among the vaccines considered in the study, the one with 89.9% effectiveness and a 183 Philippine peso price per dose projected the lowest number of deaths. Compared with other model variations and common allocation approaches, the model has achieved both an optimal and equitable allocation. CONCLUSIONS: Having a 100% coverage for vaccination with a 100% effectiveness rate of vaccine is ideal for all countries. However, some countries have limited resources. Therefore, the results of our study can be used by policymakers to determine an optimal and equitable distribution of COVID-19 vaccines for a country/community.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 , Health Care Rationing , COVID-19/prevention & control , Humans , Models, Theoretical , Philippines , Vaccination
4.
Netw Model Anal Health Inform Bioinform ; 10(1): 17, 2021.
Article in English | MEDLINE | ID: covidwho-1121504

ABSTRACT

The number of COVID-19 cases is continuously increasing in different countries including the Philippines. It is estimated that the basic reproduction number of COVID-19 is around 1.5-4 (as of May 2020). The basic reproduction number characterizes the average number of persons that a primary case can directly infect in a population full of susceptible individuals. However, there can be superspreaders that can infect more than this estimated basic reproduction number. In this study, we formulate a conceptual mathematical model on the transmission dynamics of COVID-19 between the frontliners and the general public. We assume that the general public has a reproduction number between 1.5 and 4, and frontliners (e.g. healthcare workers, customer service and retail personnel, food service crews, and transport or delivery workers) have a higher reproduction number. Our simulations show that both the frontliners and the general public should be protected against the disease. Protecting only the frontliners will not result in flattening the epidemic curve. Protecting only the general public may flatten the epidemic curve but the infection risk faced by the frontliners is still high, which may eventually affect their work. The insights from our model remind us of the importance of community effort in controlling the transmission of the disease.

SELECTION OF CITATIONS
SEARCH DETAIL